引用:
作者anshley3
似乎不對喔
那個萬有引力公式講的是兩個質點間的作用力
你用到球體球面去就有問題了
|
引用:
作者orakim
老實說 我看不懂你為什麼要把力跟面積扯上關係
拐了很大一個彎,簡單的質點,半徑不是很好用嗎?
> 因為是實心的,所以球面各處受重力相等,對一極小面積上,所受重力為 df/da
不管極小還是積分
均勻球體距離質點相同的距離重力就相同,不管在球外球內
如果是球體內的重力也只是 M=4/3 (Pi) (r)^3 x 密度
球內還是 F=GMm/(r^2)
只不過代數運算一下 看起來F跟半徑成正比
一樣的結果看起來應該比較容易接受
--
力,面積扯在一起 很容易讓人以為是在講壓力
不過整段看下來有點神奇的感覺,重力通量...
|
Adsmt網友講的大致都沒錯,有誤的部份,前面我已指出.
和[馬克士威方程組]前兩個方程式(電的高斯定律和磁的高斯定律)一樣,Adsmt網友所提的[面積],是指高斯面.
F=GMm/(r^2)這個公式當然容易接受,但是F為何和1/(r^2)成反比,則無法說明.
庫倫定律指出,靜電力也是和距離平方成反比,但庫侖定律並不被包含在[馬克士威方程組]裡,因為用電場來描述這個結果更能夠清楚說明靜電力為何和距離平方成反比,這也就是電的高斯定律,其實電的高斯定律講的和庫倫定律是同一件事情.
同樣的,用重力場來描述重力的作用,就很清楚能知道為何重力與距離平方成反比.
用重力場來描述重力的作用,當然就必須引進[重力通量],就和[電通量]與[磁通量]是一樣的道理.